Evaluation of the safety and efficiency of novel metallic implant scaler tips manufactured by the powder injection molding technique
نویسندگان
چکیده
BACKGROUND Although many studies have compared the properties of ultrasonic scaling instruments, it remains controversial as to which is most suitable for implant scaling. This study evaluated the safety and efficiency of novel metallic ultrasonic scaler tips made by the powder injection molding (PIM) technique on titanium surfaces. METHODS Mechanical instrumentation was carried out using four types of metal scaler tips consisting of copper (CU), bronze (BR), 316 L stainless steel (316 L), and conventional stainless steel (SS) tips. The instrumented surface alteration image of samples was viewed with scanning electron microscope (SEM) and surface profile of the each sample was investigated with confocal laser scanning microscopy (CLSM). Arithmetic mean roughness (Ra) and maximum height roughness (Rmax) of titanium samples were measured and dissipated power of the scaler tip was estimated for scaling efficiency. RESULTS The average Ra values caused by the 316 L and SS tip were about two times higher than those of the CU and BR tips (p < 0.05). The Rmax value showed similar results. The efficiency of the SS tip was about 3 times higher than that of CU tip, the 316 L tip is about 2.7 times higher than that of CU tip, and the BR tip is about 1.2 times higher than that of CU tip. CONCLUSIONS Novel metallic bronze alloy ultrasonic scaler tip minimally damages titanium surfaces, similar to copper alloy tip. Therefore, this bronze alloy scaler tip may be promising instrument for implant maintenance therapy.
منابع مشابه
On the Study of Mechanical Properties of Aluminum/Nano-Alumina Composites Produced via Powder Injection Molding
Powder Injection Molding (PIM) is a precision manufacturing process used for production of advanced composites. Mixing of polymeric binder with metal powders, molding of feedstock, de-binding of brown parts and sintering of green samples are four main steps of this process. In the present study, the compounds containing multi-component binder system and aluminum/ nano-alumina (0-9 wt.%) powders...
متن کاملSimulation and modeling of macro and micro components produced by powder injection molding: A review
During the recent years powder processing technologies have gained much attention due to the less energy consumption and recyclable powders. Manufacturing of complicated parts by the conventional powder metallurgy (PM) method is hard due to the uniaxial pressure, which leads to the low design flexibility. In order to prevail these constraints, powder injection molding (PIM) process, which inclu...
متن کاملOptimizing Rheological Behavior of Steel Feedstocks in Advanced Process of Alloying Powder Injection Molding
The rheological behavior of feedstocks used in powder injection molding technology influences strongly on the final properties of the products. Powder loading is one of the important factors that have a great distribution on rheological behaviors. By using the gas atomized spherical 316L stainless steel powder and the binder of 55% paraffin wax+ 40% polyethylen+ 5% stearic acid, four kinds of f...
متن کاملThe Effect of Binder Components and Powder to Binder Ratio on Rheological Properties of Mg-SiC Feedstocks
Rheological characteristics of powder injection molding PIM feedstocks play an important role in final properties of manufactured MMCs. In this study, six formulations composed of magnesium and SiC powder (99:1 wt.%) and a specific binder were prepared to investigate the influence of binder composition, powder to binder ratio, time and temperature on rheological properties of the feedstock. Th...
متن کاملEffects of Micro and Nano Sized SiC Powder on the Rheological Properties of Al Based Feedstocks for Low Pressure Injection Molding
This study investigates the effects of micro- and nano-sized SiC powder on the rheological behavior of Al based feedstocks for powder injection molding (PIM). Different compositions of Al feedstocks with additions of micro and nano-SiC powder were prepared and their rheological properties were measured with a rotational rheometer. The effects of SiC content and shear rate were investigated and...
متن کامل